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Abstract
The goal is to define and compute properties of the Losev-Manin shuffle algebra. This algebra
arises from geometry, namely from the Losev-Manin spaces, however we will not work on nor
define those spaces. Those spaces are defined in [5] but their definition is not needed to understand
what we are going to discuss. We will start from a definition of this shuffle algebra given by gen-
erators and relations.

On the one hand, we will define the structures and tools we are going to use, see [4, 2, 1].
We will be working on shuffle algebras, and adapt the notion of Gröbner basis on those algebras.
Finally we will define the notion of Anick’s resolution also adapted on shuffle algebras.

On the other hand, we will apply those tools on the Losev-Manin shuffle algebra, starting by
defining it, and compute a Gröbner basis to construct the Anick’s resolution.
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1 Tools on shuffle algebras
Let’s note [n] = {1, · · · , n}.

1.1 Shuffle algebra
We start by defining the "nonsymmetric collections", the definition may seem useless or trivial,
however it is linked to the definition of "symmetric collections" in 1.2, indeed it is a symmetric
collection without the symmetry.

Definition 1.1.1. A nonsymmetric collection is a sequence V = V(n)n≥0 of F-vector spaces.
A morphism between two nonsymmetric collections V and W is a collection of linear maps
ϕn : V(n) 7→ W(n), for n ≥ 0. If each ϕn is an embedding of a subspace, we call the collec-
tion of their images a subcollection of W , and write V ⊂ W .

Example 1.1.1. The nonsymmetric collection F is defined as follow:

F(k) =

{
F if k = 0

0 else

Definition 1.1.2. Let V and W be two nonsymmetric collections. The direct sum V⊕W is defined
by the formula:

(V ⊕W)(n) = V(n)⊕W(n)

The shuffle tensor product V ⊠W is defined by the formula:

(V ⊠W)(n) =
⊕

I⊔J=[n]

V(|I|)⊗W(|J |)

Where the sum is taken over all partitions of [n] into two disjoint subsets I and J .

Property 1.1.3. The shuffle tensor product is associative.

Proof. Let U ,V and W be three nonsymmetric collections,

((U ⊠ V)⊠W)(n) =
⊕

I⊔J⊔K=[n]

(U(|I|)⊗ V(|J |))⊗W(|K|)

≃
⊕

I⊔J⊔K=[n]

U(|I|)⊗ (V(|J |)⊗W(|K|)) = (U ⊠ (V ⊠W))(n)

Property 1.1.4. The nonsymmetric collection F is the unit element of the shuffle tensor product.
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Proof. Let V be a nonsymmetric collection,

(V ⊠ F)(n) =
⊕

I⊔J=[n]

V(|I|)⊗ F(|J |)

= V(|[n]|)⊗ F = V(n)

Same for F⊠ V .

Definition 1.1.5. Hence the shuffle tensor power can be defined as follow: V⊠n is the shuffle tensor
product of n copies of V (and V⊠0 = F).

Definition 1.1.6. A shuffle algebra is a monoid in the category of nonsymmetric collections with
respect to the shuffle tensor product.

More concretely, the structure of shuffle algebra on a nonsymmetric collection A is given by a
collection of maps:

µI,J : A(|I|)⊠A(|J |) → A(n)

For each I ⊔ J = [n], and unit element e ∈ A(0), following the properties:

• associativity
µI⊔J,K ◦ (µI,J ⊗ id) = µI,J⊔K ◦ (id ⊗ µJ,K)

For each I, J and K finite part of N∗. We note this map µI, J,K.

• unit
µ∅,[n] ◦ (e⊗ id) = µ[n],∅ ◦ (id ⊗ e) = id

For every n ∈ N .

Definition 1.1.7. A free shuffle algebra generated by a nonsymmetric collection M is:

TX(M) =
⊕
k≥0

M⊠k

Let X = (X (n))n≥0 be a sequence of finite sets, FX = (FX (n))n≤0 is a nonsymmetric collection,
let’s define TX(X ) = TX(FX )

Definition 1.1.8. Let X = (X (n))n≥0 be a sequence of finite sets. A shuffle monomial of arity
n ∈ N and length k ∈ N of X is a couple (π, ν), with:

• π = (I1, · · · , Ik) is an ordered partition of [n] of length k;

• ν = (m(1), · · · ,m(k)) such that m(λ) ∈ X (|Iλ|).

Let’s note it:
m

(1)
I1

· · ·m(k)
Ik

Let m = m(1) ⊗ · · · ⊗ m(k) be the corresponding element in TX(X ) we identify it with the
monomial.
Shuffle polynomials are linear combinations of monomials of the same arity.
The monomial for which K = ∅ and k = 0 is the trivial monomial.
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Property 1.1.9. The monomials of arity n form a basis of TX(X )(n).

Proof. We have:

TX(X )(n) = FX (n)⊕
( ⊕
I1⊔I2=[n]

FX (|I1|)⊗FX (|I2|)
)
⊕
( ⊕
I1⊔I2⊔I3=[n]

FX (|I1|)⊗FX (|I2|)⊗FX (|I3|)
)
⊕· · ·

Hence a basis of TX(X )(n) is :

X (n) ⊎
( ⊎
I1⊔I2=[n]

X (|I1|)×X (|I2|)
)
⊎
( ⊎
I1⊔I2⊔I3=[n]

X (|I1|)×X (|I2|)×X (|I3|)
)
⊎ · · ·

Since
⊎

I1⊔···⊔Ik=[n]X (|I1|) × · · · × X (|Ik|) is the set of monomials of length k and arity n, the
result is proven.
(The two symbols ⊎ and ⊔ are used differently, A ⊔ B states that A and B are disjoint and builds
the union, whereas A ⊎B constructs a disjoint union even if A and B are not disjoints.)

Remark 1.1.2. This leads to a more explicit construction of a free shuffle algebra by taking the
span of monomials of the same arity.

Definition 1.1.10. Let m be a monomial. A left (resp. right) factor mleft (resp. mright) of m is a
monomial such that we have a product map µI,J and a monomial r such that m = µI,J(mleft, r)
(resp. m = µI,J(r,mright)). Since the product map is uniquely determined by the factor, let’s write
it m = mleftr.
A divisor q of m is a monomial such that we have a product map µI,J,K , a left and a right factor
mleft and mright such that m = µI,J,K(mleft, q,mright). Since the product map is uniquely deter-
mined by the choice of the factors, let’s write it m = mleftqmright

The monomial m is divisible by q.

Definition 1.1.11. A (double sided) ideal of a shuffle algebra is a nonsymmetric subcollection
I ⊂ A such that for µ : A⊠A → A the structure map, we have:

µ(I ⊠A+A⊠ I) ⊂ I

Property 1.1.12. Let A be a shuffle algebra and I an ideal of A, the quotient A/I is well defined
and is a shuffle algebra.

Proof. The nonsymmetric collection A/I is defined by (A/I)(n) = A(n)/I(n).
The ideal condition over I ensures that the structure maps of A (the product maps µI,J ) go to the
quotient.
Hence A/I have a structure of shuffle algebra.

Definition 1.1.13. Let A be a shuffle algebra and S = (S(n))n≥0 with S(n) ⊂ A(n). The Ideal
I(S) generated by S is the smallest (for the inclusion) ideal of A containing S. It is well defined
since an intersection of ideals is an ideal.
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Definition 1.1.14. A presentation by generators and relations is a couple (X , R) such that X = (X (n))n≥0

and R = (R(n))n≥0, the R(n) and the X (n) are finite, and R(n) ⊂ TX(X ).
The corresponding shuffle algebra is A = TX(X )/I(R).

Definition 1.1.15 (Losev-Manin shuffle algebra). Let X = (∅, {α}, {α}, · · · ),
let rn,a,b =

∑
A∋a
B∋b

A⊔B=[n]

(αAαB − αBαA)

and let R = ({rn,a,b | a ̸= b ≤ n})n≥0.
The Losev-Manin shuffle algebra is the shuffle algebra defined by generators and relations (X , R).

6



1.2 Twisted associative algebra
We now define the twisted associative algebras which are in fact the main objects we want to study.
Twisted associative algebras are shuffle algebras with a symmetric structure on them, however,
this symmetric structure makes it impossible to define a compatible order on monomials, and so
impossible to define Gröbner bases.

Definition 1.2.1. A symmetric collection is a sequence VS = VS(n)n≥0 of F-vector spaces to-
gether with an action of Sn on VS(n). A morphism between two symmetric collections VS and
WS is a collection of Sn-equivariant linear maps ϕn : V(n) 7→ W(n), for n ≥ 0. If each ϕn is an
embedding of a subspace, we call the collection of their images a subcollection of WS, and write
VS ⊂ WS.

Example 1.2.1. The nonsymmetric collection F has a unique structure of symmetric collection (by
trivial action of Sn). We note the symmetric collection FS.

Definition 1.2.2. Let VS and WS be two symmetric collections. The direct sum VS ⊕ WS is
defined by the formula:

(VS ⊕WS)(n) = VS(n)⊕WS(n)

The tensor product VS ⊗WS is defined by the formula:

(VS ⊗WS)(n) =
n⊕

k=0

IndSn
Sk×Sn−k

VS(k)⊗WS(n− k)

With IndSn
Sk×Sn−k

VS(k)⊗WS(n−k) the Sn-representation induced by the Sk×Sn−k-representation
VS(k)⊗WS(n− k).

Property 1.2.3. Let VS and WS be two symmetric collections and V and W the underlying non-
symmetric collections. We have that the underlying nonsymmetric collection of VS ⊗ WS is iso-
morphic to V ⊠W .

Proof. It comes from the fact that for any Si-representation E and Sj-representation F , we have:

IndSi+j

Si×Sj
E ⊗ F ≃

⊕
|I|=i
|J |=j

I⊔J=[i+j]

E ⊗ F

This follow from the definition of the induced representation of symmetric groups.

Remark 1.2.2. The shuffle tensor product of nonsymmetric collections is in fact the tensor product
of symmetric collections on which we forget the symmetric structure.

Property 1.2.4. The tensor product of symmetric collections is associative.
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Proof. Let US,VS and WS be three symmetric collections,

((US ⊗ VS)⊗WS)(n) =
⊕

I⊔J⊔K=[n]

(US(|I|)⊗ VS(|J |))⊗WS(|K|)

≃
⊕

I⊔J⊔K=[n]

US(|I|)⊗ (VS(|J |)⊗WS(|K|)) = (US ⊗ (VS ⊗WS))(n)

Property 1.2.5. The symmetric collection FS is the unit element of the tensor product of symmetric
collections.

Proof. Let VS be a symmetric collection,

(VS ⊗ FS)(n) =
⊕

I⊔J=[n]

VS(|I|)⊗ FS(|J |)

= VS(|[n]|)⊗ F = VS(n)

Same for FS ⊗ VS.

Definition 1.2.6. Hence the tensor power of symmetric collections can be defined as follow: V⊗n
S

is the tensor product of n copies of VS.

Definition 1.2.7. A twisted associative algebra is a monoid in the category of symmetric collec-
tions with respect to the tensor product.

Remark 1.2.3. One may find a more concrete way to define twisted associative algebras, the same
way we gave a more concrete way to define a shuffle algebra.

Definition 1.2.8. A free twisted associative algebra generated by a symmetric collection MS is:

TΣ(MS) =
⊕
k≥0

M⊗k
S

Let XS = (XS(n))n≥0 be a sequence of finite sets together with an action of Sn on each XS(n),
let FXS be the generated symmetric collection, let’s define TΣ(XS) = TΣ(FXS)

Definition 1.2.9. A (double sided) ideal of a twisted associative algebra is a symmetric subcollec-
tion IS ⊂ AS such that for µ : AS ⊗AS → AS the structure map, we have:

µ(IS ⊗AS +AS ⊗ IS) ⊂ IS

Property 1.2.10. Let AS be a twisted associative algebra and IS an ideal of AS, the quotient
AS/IS is well defined and is a twisted associative algebra.

Proof. The symmetric collection AS/IS is defined by (AS/IS)(n) = AS(n)/IS(n).
The ideal condition over IS ensures that the structure maps of AS go to the quotient.
Hence AS/IS has a structure of twisted associative algebra.
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Definition 1.2.11. Let AS be a twisted associative algebra and S = (S(n))n≥0 with S(n) ⊂
AS(n). The ideal IS(S) generated by S is the smallest (for the inclusion) ideal of AS containing
S. It is well defined since an intersection of ideals is an ideal.

Property 1.2.12. Let AS be a twisted associative algebra, the underlying nonsymmetric collection
is a shuffle algebra.

Proof. One may construct the forgetful fonctor between the category of symmetric collections and
the category of nonsymmetric collections, applying it to a twisted associative algebra proves the
result.

Corollary 1.2.1. The definition of shuffle monomials leads to a definition of monomials in the
twisted associative algebras.

Definition 1.2.13. A presentation by generators and relations is a couple (XS, R) such that XS = (XS(n))n≥0

and R = (R(n))n≥0, the R(n) and the X (n) are finite, and R(n) ⊂ TΣ(XS).
The corresponding twisted associative algebra is AS = TΣ(XS)/IS(R).

Theorem 1.2.1. The Losev-Manin shuffle algebra has a unique structure of twisted associative
algebra.

Proof. Let X = (∅, {α}, {α}, · · · ),
let rn,a,b =

∑
A∋a
B∋b

A⊔B=[n]

(αAαB − αBαA)

and let R = ({rn,a,b | a ̸= b ≤ n})n≥0.
There is a unique structure of symmetric collection XS on X (given by the trivial action of Sn).
Hence the twisted associative algebra TΣ(XS)/IS(R) is well defined.
Moreover, those actions give an action of Sn on R(n) by σ.rn,a,b = rn,σ(a),σ(b). Hence the under-
lying nonsymmetric collection of IS(R) is I(R).
Hence the underlying nonsymmetric collection of TΣ(XS)/IS(R) is the Losev-Manin shuffle al-
gebra.

Remark 1.2.4. In fact, the algebraic object that arises from geometry is the Losev-Manin twisted
associative algebra, but because of the next result (Property 1.3.1), we will mostly work with
the shuffle algebra. The goal was to show that this algebra has many symmetries and very deep
connections with the symmetric groups and their representations.
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1.3 Gröbner basis
The goal is to get "canonical" elements (namely the normal forms) in the cosets of quotient alge-
bras, in particular in the case of algebras defined by generators and relations. To do so, we need to
define the notion of Gröbner basis. We will prove that it cannot be done over twisted associative
algebras, thus we will forget their symmetry and define it over shuffle algebras.

Property 1.3.1. In general, it is not always possible to define a total ordering of basis elements
of a twisted associative algebra which would lead to normal forms in quotient twisted associative
algebras.

Proof. The idea of the proof is to work on an example. Let AS = TΣ(XS) with XS = (∅, {α}, ∅, ∅, · · · )
and IS = IS(α1α2 − α2α1). One can remark, that IS(α1α2) = IS(α2α1) let’s note it LT (IS).
Moreover, IS ⊊ LT (IS), and thus the underlying vector spaces of AS/IS and AS/LT (IS) have
different dimensions.
A more complete proof is given in [2].

Remark 1.3.1. This result means that Gröbner basis cannot be adapted to twisted associative alge-
bra. Hence we will define them over shuffle algebra.

Definition 1.3.2. Let F be a free shuffle algebra and let Xn be the set of its monomials of arity n.
A monomials order Ξ on F is a sequence of orders Ξn on Xn such that:

• Each Ξn is a well-order,

• Each shuffle product maps (the µI,J in Definition 1.1.6) are strictly increasing in both vari-
ables.

Let F = TX(X ) be a free shuffle algebra and Ξ a monomial order on it.

Property 1.3.3. Let I be an ideal of F , then LT (I) the space of leading terms of I is also an
ideal.

Proof. By definition LT (I) is the nonsymmetric subcollection of F generated by the leading
terms of I. Hence it suffices to prove that LT (I) is stable by the product maps µI,J . Let P,Q ∈ I
and let p, q be their leading terms. Since µI,J is increasing, the leading terms of µI,J(P,Q) is
µI,J(p, q).This ends the proof.

Definition 1.3.4. Let G = (G(n))n≥0, such that G(n) ⊂ I(n). It is a Gröbner basis with respect to
the monomial order Ξ as long as LM(G) the set of leading monomials of G generates LT (I) (as
an ideal).

Property 1.3.5. A Gröbner basis G of I generates I (as an ideal).
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Proof. Let’s assume that I(G) ⊊ I, let f ∈ I \ I(G) with the least possible leading monomial.
By definition of a Gröbner basis, we have g ∈ G such that LM(g) is a divisor of LM(f). Hence
LM(f) = mleftLM(g)mrigh, let rg(f) = f−mleftgmright, we have rg(f) ∈ I and rg(f) /∈ I(G),
moreover, the leading term of rg(f) is smaller than the leading term of f . Hence the leading term
of f is not minimal.

E
Contradiction

Definition 1.3.6. Let S be a family of polynomials, a reduced monomial with respect to S is a
monomial m such that m is not divisible by any leading monomial of elements of S.
A reduced polynomial with respect to S is a polynomial P which is a linear combination of mono-
mials that are reduced with respect to S.
The family S is self-reduced as long as for any P ∈ S , the polynomial P is reduced with respect
to S \ {P}.
A reduced form of a polynomial P with respect to S is a polynomial Q such that Q is reduced with
respect to P and P = Q+R with R ∈ I(S). In general, the reduced form is NOT unique.

Definition 1.3.7. Let’s define the following algorithm for P a polynomial and S a family of poly-
nomials:

Def Reduction(P,S):
If P is reduced with respect to S:
Return P;

Else:
Let m, mleft, mright and s such that m = mleftLM(s)mright

with s in S
and m the greater unreduced monomial of P;

Let rs(P ) = P −mleftsmright;
Return Reduction(rs(P ),S);

Property 1.3.8. The Reduction algorithm terminates and returns a reduced form of P with
respect to S (hence any polynomial admit a reduced form).

Proof. The algorithm terminates since the greater unreduced monomial of rs(P ) is lesser than the
greater unreduced monomial of P and since that Ξn is a well order. The polynomial returned is
reduced and since at each step we subtract an element of I(S), it is a reduced form.

Property 1.3.9. Let I be an ideal of F , then G ⊂ I is a Gröbner basis if and only if the cosets of
monomials that are reduced with respect to G form a basis of F/I (of each component as a vector
space).

Proof. Let us note that the cosets of monomials that are reduced with respect to G form a basis of
the quotient F/I if and only if every coset contains a unique element that is reduced with respect
to G.
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First of all, since each polynomial admits a reduced form, each coset contains a reduced element
whether G is a Gröbner basis or not.
Suppose now thatG is a Gröbner basis of I. Suppose that the cosets of reduced monomials are
linearly dependent, or, in other words, that the zero coset which is I contains a nonzero reduced
element f . In that case, LM(f) ∈ LT (I) is reduced with respect to G, which is a contradiction.

E
Contradiction

Suppose that G is not a Gröbner basis. This implies that there exists an element f ∈ I \ {0}
for which LM(f) is reduced with respect to G. Hence the reduction of f (by the Reduction
algorithm) is a nonzero reduced form of zero.

E
Contradiction

Corollary 1.3.1. G is a Gröbner basis if and only if the reduced form with respect to G is unique
for every polynomials.

Corollary 1.3.2 (Diamond lemma). G is a Gröbner basis if and only if the result of the Reduction
algorithm does not depend of the order of the reductions.

Remark 1.3.2. This diamond lemma is a meaningful result if we interpret the Gröbner basis as a
way to avoid patterns in monomials when seeing them as words over the alphabet of their genera-
tors.

Theorem 1.3.1. An ideal I admits a unique reduced Gröbner basis (up to multiplication by a
scalar).

Proof. Let us first prove uniqueness. If G is a Gröbner basis, then LT (I) = I(LM(G)); if G is
reduced, then LM(G) ⊂ LM(I) must coincide with the set M of elements of LM(I) that are
not divisible by other elements of LM(I). (In other words, M is the set of minimal elements of
LM(I) with respect to the partial order of divisibility). For each m ∈ M we have a unique g ∈ G,
moreover m − g is reduces with respect to I since G is self-reduced, hence m − g is the reduced
form of m.
Let’s construct G as we prove that it must look like. Let g = m−h with m ∈ M and h its reduced
form. The set M generates LT (I) since if M does not generate LT (I), the smallest element not
divisible by any element of M must be in M by definition. Hence G is a Gröbner basis which is
self reduced by construction.
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1.4 Anick’s resolution
Let A be a shuffle algebra defined by generators and relations (X , R) such that R is a Gröbner
basis. Let R̃ be the leading monomials of elements of R. and Ã the shuffle algebra defined by
(X , R̃). Let F = TX(X ).

Definition 1.4.1. To build the Anick resolution, we need to define the k-chains and there tails. Let
Ck be the set of k-chains, they are defined inductively.
The 0-chains are the generators and their tails are themselves.
The 1-chains are elements of R̃, and let m = m

(1)
I1

· · ·m(k)
Ik

be a 1-chain, its tail is t(m) =

m
(2)
I2

· · ·m(k)
Ik

.
A monomial m is a n-chain as long as it satisfies those three conditions:

• (1): m = m′t(m) with m′ a (n − 1)-chain and t(m) not divisible by any element of R̃, we
define t(m) as its tail.

• (2): m′ = m′′t(m′) and t(m′)t(m) is divisible by an element of R̃.

• (3): No proper beginning of m satisfy both (1) and (2).

By convention, 1 is the only (−1)-chain and is its own tail.

Definition 1.4.2. Let Ck(n) be the set of k-chains of arity n. Let Vk(n) be the span of Ck(n), and
let Vk be the associated nonsymmetric collection.

Definition / Property 1.4.3. Let Ã = F/R̃. We have an obvious resolution of F as a Ã-module:

F F⊠ Ã V0 ⊠ Ã · · · Vk−1 ⊠ Ã Vk ⊠ Ã · · ·
d̃k+1ϵ̃ d̃0 d̃1 d̃k−1 d̃k

With d̃k : m
(1)
I1

· · ·m(λ=1)
Iλ+1

⊗ 1 7→ m
(1)
I1

· · ·m(λ)
Iλ

⊗m
(λ+1)
Iλ+1

.

The idea beyond the Anick resolution is to modify this resolution of Ã-module a bit to get a
resolution of A-module by adding smaller monomials to d̃k.

Definition / Property 1.4.4. The Anick resolution is a free resolution of F viewed as a (right)
A-module:

F F⊠A V0 ⊠A · · · Vk−1 ⊠A Vk ⊠A · · ·
dk+1ϵ d0 d1 dk−1 dk

The maps dk are defined inductively together with the maps ιk : ker(dk) → Vk ⊗A. The maps dk
are right A-linear and the maps ιk are F-linear hence, it suffices to define dk on every k-chain:

• Base case: Let’s define d−1 = ϵ and d0 : m⊗ 1 7→ 1⊗m.
And ι−1 : 1 7→ 1⊗ 1 and ι0 : 1⊗m

(1)
I1

· · ·m(k)
Ik

7→ m
(1)
I1

⊗m
(2)
I2

· · ·m(k)
ik

.
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• Inductive step: Let gt be a (k + 1)-chain such that t is its tail.

dk+1 : gt⊗ 1 7→ g ⊗ t− ιk(dk(g ⊗ t))

Let u ∈ ker(dk+1), let λf ⊗ s be the leading term of u, let f = hr with r its tail, rs is not
reduced, we have s = xy such that fx is a (k + 1)-chain.

ιk+1 = λfx⊗ y + ιk+1(u− dk+1(λfx⊗ y))

(The order used is m1 ⊗m2 > m3 ⊗m4 iff m1m2 > m3m4 in F with the elements of A in
reduced form.)

Proof. One need to prove that this is indeed a resolution. It is proven in [6] for graded algebras,
the proof can be adapted to shuffle algebras and it is done in [3].

14



2 Computation on the Losev-Manin shuffle algebra
We are now going to use the tools we have defined to study the Losev-Manin shuffle algebra. This
shuffle algebra arises from geometry namely from the Losev-Manin spaces. We will not directly
study or define those spaces, we will rather prove some algebraic results on their shuffle algebra
(which in fact can be translated into geometric properties). The goal is to compute its Gröbner
basis and its Anick’s resolution.

2.1 The Losev-Manin shuffle algebra
We will use A,B,C, I, J,K and L for finite parts of N∗ and a, b, c, i, j, k, l and n for positive inte-
gers.

Let’s note [n] = {1, · · · , n}.

Let X = (∅, {α}, {α}, · · · ) and F = TX(X ) be the free shuffle algebra with one generator of
each positive order named α.

Let’s give an order on the monomials of F . Let’s use the lexicographic order on 2(N
∗), let’s

use the lexicographic order on the monomials of F (seen as words over 2(N∗)). This is a monomial
order.

For m = αI1 · · ·αIk a non-trivial monomial of F , let last(m) = max(Ik).

The components F(n) are vector spaces. Let F(n, k) be the sub-vector space spaned by the
monomials of length exactly k.
We have F(n) =

⊕n
k=1F(n, k) and F(0) = F(0, 0).

Definition 2.1.1. For A and B disjoint finite parts of N∗, let:

[αA, αB] = αAαB − αBαA

Remark 2.1.1. If A ⊔ B ̸= [n] for some n ∈ N then [αA, αB] is not a shuffle polynomial, the
notation is nonetheless useful in this case to more easily write down some shuffle polynomials.

Definition 2.1.2. Let n ∈ N, for a, b ∈ [n] and a ̸= b, let rn,a,b =
∑

A∋a
B∋b

[αA, αB] ∈ F(n).

Let R = ({rn,a,b | a ̸= b ≤ n})n≥0.
Let R be the ideal of F generated by the R.

Definition 2.1.3. Let’s define:
rK,a,b =

∑
A∋a
B∋b

A⊔B=K

[αA, αB]

For K a finite subset of N∗. Those are not shuffle polynomials (as in Remark 2.1.1) .
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Definition 2.1.4. We recall that A defined by generators and relations by (X , R) is the Losev-
Manin shuffle algebra. By definition, one may remark that the length is still well defined on
this algebra (since for each rn,a,b all its monomials have the same length), moreover it has an
augmentation map ϵ.

Property 2.1.5. Let R(n) = R ∩ F(n) and R(n, k) = R ∩ F(n, k). One can remark that
R(n) =

⊕n
k=1R(n, k), and R(0) = {0}.

Hence, A(n) =
⊕n

k=1A(n, k) with A(n, k) = F(n, k)/R(n, k), and A(0) = A(0, 0).

Remark 2.1.2. If we do the first computations, we get:
dim(A(0, 0)) = 1.
dim(A(1, 1)) = 1.
dim(A(2, 1)) = 1 and dim(A(2, 2)) = 1.
dim(A(3, 1)) = 1, dim(A(3, 2)) = 4 and dim(A(3, 3)) = 1.
And with a bit more computations:
dim(A(4, 1)) = 1, dim(A(4, 2)) = 11, dim(A(4, 2)) = 11 and dim(A(4, 4)) = 1.
We recognize the eulerian numbers.

Definition 2.1.6. Let σ ∈ S(n), a descent of σ is i ∈ [n − 1] such that σ(i) > σ(i + 1). The
(n, k)-eulerian number is the number of elements of S(n) with exactly k descents. Let’s write it
a(n, k).

Definition 2.1.7. Let m = αI1 · · ·αIk ∈ F(n, k) a monomial, an ascent of m is i ∈ [n − 1] such
that max(Ii) > min(Ii+1). A descents of m is i ∈ [n− 1] such that max(Ii) < min(Ii+1).
Let U(n, k) be the sub-vector space of F(n, k) spaned by the monomials with at least one ascent.
Let D(n, k) be the sub-vector space of F(n, k) spaned by the ascent-free monomials.

16



2.2 Computing a Gröbner basis
The goal is to work on the relations defining A to find a Gröbner basis. Gröbner basis can be seen
as a way to avoid the patterns of the leading monomials of the basis, and give a simple algorithm to
compute the reduced form. However the algorithm is not unique and one need to check a diamond
lemma in order to check if it is a Gröbner basis. The relations defining A aren’t simple enough to
easily check the diamond lemma hence we will instead prove that the reduced form is unique.

Property 2.2.1. Let n ∈ N and a, b, c ∈ [n] different, we have rn,a,b − rn,a,c = rn,c,b.

Proof. Let’s compute this (we implicitly have I ⊔ J = [n]):

rn,a,b =
∑
I∋a
J∋b

[αI , αJ ]

=
∑
I∋a,c
J∋b

[αI , αJ ] +
∑
I∋a
J∋b,c

[αI , αJ ]

Hence:

rn,a,b − rn,a,c =
∑
I∋a,c
J∋b

[αI , αJ ] +
∑
I∋a
J∋b,c

[αI , αJ ]− (
∑
I∋a,b
J∋c

[αI , αJ ] +
∑
I∋a
J∋b,c

[αI , αJ ])

=
∑
I∋a,c
J∋b

[αI , αJ ]−
∑
I∋a,b
J∋c

[αI , αJ ]

=
∑
I∋a,c
J∋b

[αI , αJ ] +
∑
J∋a,b
I∋c

[αI , αJ ] = rK,c,b

Corollary 2.2.1. Hence (rn,i,i+1)i∈[n−1] is a basis of R(n, 2), let’s write them rn,i. Moreover
(rn,i)i∈[n−1] is in bijection with the basis of U(n, 2).
Same as in Definition 2.1.3, it is useful to define the rK,i the same way.

Proof. By the last property, this is a generating family. Let’s project this family in U(n, 2), we get
the identity matrix, hence this family is free.

Corollary 2.2.2. For k = 0 or 1 or 2, we have dim(A(n, k)) = a(n, k − 1).

Proof. This is clear for k = 0 or 1. For k = 2, this is the last corollary.

We now have a candidate for the Gröbner basis, which is {rn,i | K ∈ N, i ∈ [n− 1]}. We need
to check the diamond lemma, since the relations are homogeneous of length 2, it is enough to check
it on monomials of length 3. To do that, let’s use the algorithm that reduces the leftmost descent at
each step, and show that the set of relations that this algorithm uses is a basis of R(n, 3). To do so,
we need a "relation between the relations" which is the following.
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Definition 2.2.2. Let n ∈ N∗, let’s note (we implicitly have J ⊔K = [n]):

[a, b], c =
∑
J∋c

rK,a,bαJ

and
c, [a, b] =

∑
J∋c

αJrK,a,b

Let [[a, b], c] = [a, b], c− c, [a, b].

Property 2.2.3. We have the equality : [[a, b], c] + [[b, c], a] + [[c, a], b] = 0

Proof. (We implicitly have J ⊔K = [n] and A ⊔B ⊔ C = [n].)

[[a, b], c] + [[b, c], a] + [[c, a], b] =
∑
J∋c

rK,a,bαJ − (
∑
J∋c

αJrK,a,b)

+
∑
J∋a

rK,b,cαJ − (
∑
J∋a

αJrK,a,c)

+
∑
J∋b

rK,c,aαJ − (
∑
J∋b

αJrK,c,a)

= (
∑
A∋a
B∋b
C∋c

αAαBαC −
∑
A∋a
B∋b
C∋c

αBαAαC)

− (
∑
A∋a
B∋b
C∋c

αCαAαB −
∑
A∋a
B∋b
C∋c

αCαBαA)

+ (
∑
A∋a
B∋b
C∋c

αBαCαA −
∑
A∋a
B∋b
C∋c

αCαBαA)

− (
∑
A∋a
B∋b
C∋c

αAαBαC −
∑
A∋a
B∋b
C∋c

αAαCαB)

+ (
∑
A∋a
B∋b
C∋c

αCαAαB −
∑
A∋a
B∋b
C∋c

αAαCαB)

− (
∑
A∋a
B∋b
C∋c

αBαCαA −
∑
A∋a
B∋b
C∋c

αBαAαC)

= 0
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Property 2.2.4. The set

E(n,3) = {rK,iαJ | K ⊔ J = [n]} ∪ {αJrK,i | K ⊔ J = [n],max(J) > min(K)}

form a free family of F(n, 3). Moreover this set is in bijection with the basis of U(n, 3).

Proof. Let’s prove that this family is free:
The leading monomial of rK,iαJ is αAαBαJ with A = {λ ∈ K | λ ≤ i} and B = {λ ∈ K | λ > i}.
Same for the leading monomial of αJrK,i which is αAαBαJ .
Assume that αAαBαC is the leading monomial of two elements of the set E(n,3): then it is the
leading monomial of rA⊔B,max(A)αC and of αArB⊔C,max(B) but αArB⊔C,max(B) /∈ E(n,3) since:

max(A) < min(B) ≤ max(B) < min(C)

E
Contradiction

Let αAαBαC be a monomial with at least one ascent, if A to B is an ascent then it is the leading
monomial of rA⊔B,max(A)αC ∈ E(n,3). Else, B to C is an ascent so it is the leading monomial of
αArB⊔C,max(B) ∈ E(n,3) since A to B is not an ascent.
Hence taking the leading monomials gives us a bijection between E(n,3) and the basis of U(n, 3).
This gives us an ordering of E(n,3) such that if we project it on U(n, 3), we get a triangular matrix
with ones on the diagonal . Hence E(n,3) is free.

With this property, we’ve proven that E(n,3) is the set of relations that appear when we reduce
the leftmost descent at each step for monomials of length 3.

Theorem 2.2.1. The set

E(n,3) = {rK,iαJ | K ⊔ J = [n]} ∪ {αJrK,i | K ⊔ J = [n],max(J) > min(K)}

forms a basis of R(n, 3).

Proof. The vector space R(n, 3) is generated by

{rK,iαJ | K ⊔ J = [n]} ∪ {αJrK,i | K ⊔ J = [n]}

Let V be the span of E(n,3), since E(n,3) is free, it suffices to prove that

{αJrK,i | K ⊔ J = [n],max(J) < min(K)} ⊆ V

Since max(J) < min(K), let a = max(J), we have J = [a], hence rK,i = rK,i,i+1 and if
J ̸= [max(J)] then αJrK,i ∈ E(n,3).
Let’s fix b ∈ [n − 1] and c = b + 1. Let’s inductively prove over k that α[b−k]rK,b ⊆ V with
K = [n] \ [b− k].

19



• Base case: Let a = b− 1. We have:

[[a, b], c] + [[b, c], a] + [[c, a], b] = 0

Since a > b > c, we have [[a, b], c] ∈ V , [[c, a], b] ∈ V and [b, c], a ∈ V .
Hence a, [b, c] ∈ V . Hence (we implicitly have I ⊔ L = [n]):∑

I∋a

αIrL,b,c ∈ V

Since if I ̸= [max(I)] then αIrL,b,c ∈ E(n,3), we have:∑
I∈{[a],··· ,[b−1]}

αIrL,b,c ∈ V

Hence α[b−1]rK,b ⊆ V with K = [n] \ [b− 1].

• Inductive step: Let b = a+ k and c = b+ 1. We’ve shown that:∑
I∈{[a],··· ,[b−1]}

αIrL,b,c ∈ V

By inductive hypothesis we have αIrL,b,c ∈ V for any I = [i] with a < i < b.
Hence α[b−k]rK,b ⊆ V with K = [n] \ [b− k].

Hence E(n,3) generate R(n, 3).

Corollary 2.2.3. We have dim(A(n, 3)) = a(n, 2).

Proof. It follows directly from the two last properties.

Now that we’ve proven it for k = 3, it suffices to define the same object for k > 3 and do an
induction to prove the result for any k.

Definition 2.2.5. Let n ∈ N∗ and k ≤ n.
Let E(n,k,0) = {rK,imright} ⊆ F(n, k) and let:

E(n,k,j) = {mleftrK,imright | l(m) = j and mleft is descent free and last(m) > min(K)} ⊆ F(n, k)

with mleft and mright some monomials.
Let E(n,k) =

⋃k−2
j=0 E(n,k,j).

Property 2.2.6. The set E(n,k) forms a free family of F(n, k), moreover the leading monomials
give a bijection between E(n,k) and a basis of U(n, 3).

Proof. A leading monomial of an element of E(n,k) has at least one ascent. Let m be a monomial
with a least one ascent, let m = m1αIαJm2 such that m1αI is ascent-free and there is an ascent
between I and J , then m is the leading monomial of m1rI⊔J,im2 for a unique i, moreover this is
the only element of E(n,k) such that m is its leading monomial.
Hence E(n,k) is free and in bijection with a basis of U(n, k).
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Property 2.2.7. Let x ∈ F(n, k), it admits a reduced form which is a y ∈ D(n, k) such x = y + z
with z ∈ R(n, k). Moreover if E(n,k) generates R(n, k) this reduced form is unique.

Proof. It suffices to show it for a monomial m. Let’s prove it inductively over the order of the
monomials. If m ∈ D(n, k) it is already reduced. Else, we know that m is the leading monomial
of a unique element e of E(n,k).

• Base case: If m is the smaller monomial with at least one ascent, m − e ∈ D(n, k) hence
m = e+ (m− e) and m− e is a reduced form.

• Inductive step: We know that monomials of m− e are smaller than m hence we can reduce
them by induction hypothesis, which gives us a reduced form for m.

Hence by additivity, we get a reduced form for every x ∈ F(n, k). In fact, we’ve constructed a
bijection between F(n, k)/E(n,k) and D(n, k), so if E(n,k) generates R(n, k), the reduced form is
unique.

Theorem 2.2.2. The E(n,k) form a basis of R(n, k).

Proof. We need to prove that E(n,k) generates R(n, k). Let V be the span of E(n,k), since the set
{mleftrK,imright} with no condition on mleft generates R(n, k), it suffices to show that it is in V .
Let’s prove it inductively over the length of mleft.

• Base case: If l(mleft) = 0 then rK,imright ∈ E(n,k,0) and there is nothing to prove.

• Inductive step: If mleft ∈ F(L) has at least one ascent, it admits a reduced form mleft = y + z
with y ascent-free and z ∈ R(L). By induction hypothesis, zm′

right ∈ V , hence zrK,imright ∈ V .
Hence if suffices to prove it for mleft ascent-free.
Let mleftrK,imright =

∑
B∋b
C∋c

m′
leftαA[αB, αC ]mright. If max(A) > min(B,C), this is an

element of E(n,k). Else, by Theorem 2.2.1, it is in V .

Hence E(n,k) generates R(n, k).

Corollary 2.2.4. Hence for all n and k, we have dim(A(n, k)) = a(n, k−1), hence dim(A(n)) = n!.
Moreover each element of A(n, k) has a unique reduced form.

Corollary 2.2.5. The rn,i are a Gröbner basis.
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2.3 The Anick resolution
Let’s compute this resolution in the case of the shuffle algebra A, with the Gröbner basis we have
computed.

Property 2.3.1. The k-chains are the monomials of length k + 1 with exactly k ascent. Moreover
their tails are of length 1.

Proof. Let’s prove it by induction:

• Base case: It is clear for C0. For C1, the leading monomial of rn,i is of length 2 and has 1
ascent, moreover each monomial of length 2 with 1 ascent is the leading monomial of some
rn,i.

• Inductive step: Let m = m′t(m) be a k-chain and t(m) its tail. By induction hypothesis, m′

is a monomial of length k with exactly k − 1 ascent. Moreover, m′ = m′′αI0 with αI0 the
tail of m′. Since αI0t(m) is divisible by an element of R̃, it has at least one ascent.
Let t(m) = αI1 · · ·αIk , it doesn’t have any ascent, otherwise it would be divisible by an
element on R̃. Hence the ascent is between αI0 and αI1 , hence m′αI1 satisfies both (1) and
(2). Hence m is of length k + 1, it has k ascent and its tail is of length 1.

Moreover each monomial of length k + 1 with k ascent is a k-chain since it satisfies the
conditions (1), (2) and (3) of Definition 1.4.1.

Definition 2.3.2. Let n ∈ N, let k ∈ N∗ and i1, · · · , ik+1 ∈ K. Let (with I1 ⊔ · · · ⊔ Ik+1 = [n]):

cn(i1, · · · , ik+1) =
∑
I1∋i1

...
Ik+1∋ik+1

αI1
···αIk+1

∈Ck

αI1 · · ·αIk+1
∈ Vk

Let’s call them symmetric k-chains.

Property 2.3.3. The set Xn = {cn(i1, · · · , ik, n) | i1 < · · · < ik < n} is a basis of Vk(n).

Proof. Let’s prove that taking the leading monomial gives us a bijection between Xn and Ck(n).
The leading term of cn(i1, · · · , ik, n) is α[i1]α[i2]\[i1] · · ·α[n]\[ik].
Hence this gives us a bijection between Xn and Ck(n).

Definition 2.3.4. Let’s define the following A-module morphism from Vk ⊠A to Vk−1 ⊠A (with
I ⊔ J = K):

φk : cn(i1, · · · , ik+1)⊗ 1 7→
∑

σ∈Sk+1

ε(σ)
∑

J∋iσ(k+1)

cI(iσ(1), · · · , iσ(k))⊗ αJ
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Property 2.3.5. We have φk ◦ φk+1 = 0.

Proof. It suffices to prove it on a generating family:

φk ◦ φk+1(cn(i1, · · · , ik+2)⊗ 1) =
∑

σ∈Sk+2

ε(σ)
∑

J∋iσ(k+2)

φk+1(cI(iσ(1), · · · , iσ(k+1))⊗ αJ)

=
∑

σ∈Sk+2

ε(σ)
∑

J∋iσ(k+2)

∑
σ′∈Sk+1

ε(σ′)
∑

J ′∋iσ′◦σ(k+1)

cI′(iσ′◦σ(1), · · · , iσ′◦σ(k))⊗ αJ ′αJ

=
∑

σ∈Sk+2

∑
σ′∈Sk+1

ε(σ)ε(σ′)
∑

J∋iσ(k+2)

∑
J ′∋iσ′◦σ(k+1)

cI′(iσ′◦σ(1), · · · , iσ′◦σ(k))⊗ αJ ′αJ

=
∑

σ∈Sk+2

σ′∈Sk+1
iσ′◦σ(k+1)>iσ(k+2)

ε(σ)ε(σ′)
∑

K∋iσ(k+2)

K∋iσ′◦σ(k+1)

cI′(iσ′◦σ(1), · · · , iσ′◦σ(k))⊗ rK,iσ′◦σ(k+1),iσ(k+2)

= 0

Property 2.3.6. Let m = αI1 · · ·αIk+1
∈ Ck, the leading terms of φk(m ⊗ 1) and dk(m ⊗ 1) are

the same (with dk the morphism of the Anick’s resolution).

Proof. We already know the leading term of dk(m⊗ 1), it is t = αI1 · αIk ⊗ αIk+1
. Let’s compute

it for φk. Let c be a symmetric k-chain, let mc = αJ1 · αJk+1
be its leading term, we have that the

leading term of φk(c⊗ 1) is αJ1 · αJk ⊗ αJk+1
. Let m = cm + r with cm a symmetric k-chain such

that its leading term is m and r a linear combination of symmetric k-chains of lower leading terms.
The leading term of φk(m⊗ 1) is the leading term cm hence it is t.

Theorem 2.3.1. We have φk = dk with dk the morphism of the Anick’s resolution.
Hence φk gives a formula for the morphism of the Anick’s resolution.

Proof. This result can probably be proven using spectral sequences over a filtration of the Anick’s
resolution, however, some work remains to complete the proof.

Remark 2.3.1. Let’s recall that the shuffle algebra we are studying comes from a twisted associative
algebra and that we needed to "forget" its symmetry in order to be able to compute Gröbner basis
and ultimately its Anick’s resolution. It is remarkable that the symmetry comes back in the formula
of the derivation map of the Anick’s resolution.
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